Targeting YB-1 in HER-2 overexpressing breast cancer cells induces apoptosis via the mTOR/STAT3 pathway and suppresses tumor growth in mice

Cancer Res. 2008 Nov 1;68(21):8661-6. doi: 10.1158/0008-5472.CAN-08-1082.

Abstract

The Y-box binding protein-1 (YB-1) is a transcription/translation factor that is highly expressed in primary breast tumors where it is consistently associated with poor survival. It induces human epidermal growth factor receptor (her-2) along with its dimerization partner egfr by directly binding to their promoters. In addition to promoting growth by inducing receptor tyrosine kinases, YB-1 also protects cells against apoptosis through mechanisms that have not been fully revealed. Given this, we addressed whether YB-1 might be an eventual therapeutic target for breast cancer by inhibiting it with small interfering RNAs in vitro and in vivo. Inhibiting YB-1 suppressed the growth of six of seven breast cancer cell lines that had amplified her-2 or were triple negative. Importantly, targeting YB-1 induced apoptosis in BT474-m1 and Au565 breast cancer cells known to have her-2 amplifications. The potential role of signal transducers and activators of transcription 3 (STAT3) was pursued to address the underlying mechanism for YB-1-mediated survival. Inhibition of YB-1 decreased P-STAT3(S727) but not P-STAT3(Y705) or total STAT3. This was accompanied by decreased P-ERK1/2(T202/Y204), P-mTOR(S2448), and total mammalian target of rapamycin mTOR. Furthering the role of STAT3 in these cells, we show that knocking it down recapitulated the induction of apoptosis. Alternatively, constitutively active P-STAT3 rescued YB-1-induced apoptosis. Finally, targeting YB-1 with 2 different siRNAs remarkably suppressed tumor cell growth in soft agar by >90% and delayed tumorigenesis in nude mice. We conclude that HER-2 overexpressing as well as triple-negative breast cancer cells are YB-1 dependent, suggesting it may be a good therapeutic target for these exceptionally aggressive tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / genetics*
  • Base Sequence
  • Carrier Proteins / metabolism*
  • Cell Division / genetics*
  • Cell Line, Tumor
  • Genes, erbB-2*
  • Mammary Neoplasms, Experimental / genetics
  • Mammary Neoplasms, Experimental / pathology*
  • Mice
  • Phosphotransferases (Alcohol Group Acceptor) / metabolism*
  • RNA, Small Interfering
  • STAT3 Transcription Factor / metabolism*
  • Signal Transduction
  • TOR Serine-Threonine Kinases

Substances

  • Carrier Proteins
  • RNA, Small Interfering
  • STAT3 Transcription Factor
  • Stat3 protein, mouse
  • Phosphotransferases (Alcohol Group Acceptor)
  • MTOR protein, human
  • mTOR protein, mouse
  • TOR Serine-Threonine Kinases