Delta3(E)-unsaturated fatty acids are characteristic components of glycosylceramides from some fungi, including also human- and plant-pathogenic species. The function and genetic basis for this unsaturation is unknown. For Fusarium graminearum, which is pathogenic to grasses and cereals, we could show that the level of Delta3-unsaturation of glucosylceramide (GlcCer) was highest at low temperatures and decreased when the fungus was grown above 28 degrees C. With a bioinformatics approach, we identified a new family of polypeptides carrying the histidine box motifs characteristic for membrane-bound desaturases. One of the corresponding genes was functionally characterized as a sphingolipid-Delta3(E)-desaturase. Deletion of the candidate gene in F. graminearum resulted in loss of the Delta3(E)-double bond in the fatty acyl moiety of GlcCer. Heterologous expression of the corresponding cDNA from F. graminearum in the yeast Pichia pastoris led to the formation of Delta3(E)-unsaturated GlcCer.