Background: The clinical relevance of exercise-induced pulmonary arterial hypertension (PAH) is uncertain, and its existence has never been well studied by direct measurements of central hemodynamics. Using invasive cardiopulmonary exercise testing, we hypothesized that exercise-induced PAH represents a symptomatic stage of PAH, physiologically intermediate between resting pulmonary arterial hypertension and normal.
Methods and results: A total of 406 consecutive clinically indicated cardiopulmonary exercise tests with radial and pulmonary arterial catheters and radionuclide ventriculographic scanning were analyzed. The invasive hemodynamic phenotype of exercise-induced PAH (n=78) was compared with resting PAH (n=15) and normals (n=16). Log-log plots of mean pulmonary artery pressure versus oxygen uptake (V(.)o(2)) were obtained, and a "join-point" for a least residual sum of squares for 2 straight-line segments (slopes m1, m2) was determined; m2<m1="plateau," and m2>m1="takeoff" pattern. At maximum exercise, V(.)o(2) (55.8+/-20.3% versus 66.5+/-16.3% versus 91.7+/-13.7% predicted) was lowest in resting PAH, intermediate in exercise-induced PAH, and highest in normals, whereas mean pulmonary artery pressure (48.4+/-11.1 versus 36.6+/-5.7 versus 27.4+3.7 mm Hg) and pulmonary vascular resistance (294+/-158 versus 161+/-60 versus 62+/-20 dyne x s x cm(-5), respectively; P<0.05) followed an opposite pattern. An exercise-induced PAH plateau (n=32) was associated with lower o(2)max (60.6+/-15.1% versus 72.0+/-16.1% predicted) and maximum cardiac output (78.2+/-17.1% versus 87.8+/-18.3% predicted) and a higher resting pulmonary vascular resistance (247+/-101 versus 199+/-56 dyne x s x cm(-5); P<0.05) than takeoff (n=40). The plateau pattern was most common in resting PAH, and the takeoff pattern was present in nearly all normals.
Conclusions: Exercise-induced PAH is an early, mild, and clinically relevant phase of the PAH spectrum.