The wide range optical spectra on a multiferroic prototype TbMnO3 have been investigated to clarify the origin of spin excitations observed in the far-infrared region. We elucidate the full band structure, whose high energy edge (133 cm;{-1}) exactly corresponds to twice of the highest-lying magnon energy. Thus the origin of this absorption band is clearly assigned to two-magnon excitation driven by the electric field of light. There is an overlap between the two-magnon and phonon energy ranges, where the strong coupling between them is manifested by the frequency shift and transfer of oscillator strength of the phonon mode.