Medulloblastomas are the most frequent malignant brain tumors in children. Sorafenib (Nexavar, BAY43-9006), a multikinase inhibitor, blocks cell proliferation and induces apoptosis in a variety of tumor cells. Sorafenib inhibited proliferation and induced apoptosis in two established cell lines (Daoy and D283) and a primary culture (VC312) of human medulloblastomas. In addition, sorafenib inhibited phosphorylation of signal transducer and activator of transcription 3 (STAT3) in both cell lines and primary tumor cells. The inhibition of phosphorylated STAT3 (Tyr(705)) occurs in a dose- and time-dependent manner. In contrast, AKT (protein kinase B) was only decreased in D283 and VC312 medulloblastoma cells and mitogen-activated protein kinases (extracellular signal-regulated kinase 1/2) were not inhibited by sorafenib in these cells. Both D-type cyclins (D1, D2, and D3) and E-type cyclin were down-regulated by sorafenib. Also, expression of the antiapoptotic protein Mcl-1, a member of the Bcl-2 family, was decreased and correlated with apoptosis induced by sorafenib. Finally, sorafenib suppressed the growth of human medulloblastoma cells in a mouse xenograft model. Together, our data show that sorafenib blocks STAT3 signaling as well as expression of cell cycle and apoptosis regulatory proteins, associated with inhibition of cell proliferation and induction of apoptosis in medulloblastomas. These findings provide a rationale for treatment of pediatric medulloblastomas with sorafenib.