Background: The extremely poor prognosis of patients with pancreatic ductal adenocarcinoma indicates the need for novel therapeutic approaches. The growth arrest and DNA damage-inducible (Gadd) gene Gadd45a is a member of a group of genes that are induced by DNA damaging agents and growth arrest signals.
Methods: We evaluated the biological activity of Gadd45a in pancreatic ductal adenocarcinoma cancer-derived cell lines and assessed the efficacy of a combined treatment with adenoviral-mediated expression of Gadd45a (Ad-G45a) and anticancer drug (Etoposide, cisplatin, 5-fluorouracil, respectively) for the PANC1 cell line.
Results: Gadd45a is variously expressed in cell lines derived from pancreatic ductal adenocarcinoma cancer and adenoviral-mediated expression of Gadd45a (Ad-G45a) in these cells results in apoptosis via caspase activation and cell-cycle arrest in the G2/M phase. Gadd45a significantly increased the chemosensitivity of PANC1, which may be due to abundant apoptosis induction and cell cycle arrest. By combinational treatment of Ad-G45a infection and chemotherapeutics, Gadd45a expression was elevated to a higher extent in cancer cells with wild-type p53 than in that with knocked-out p53 status, indicating a higher chemosensitivity to cancer chemotherapy.
Conclusions: Gadd45a may be a promising candidate for use in cancer gene therapy in combination with chemotherapeutic agents.
(c) 2008 John Wiley & Sons, Ltd.