The toxR gene of Vibrio cholerae encodes a transcriptional activator required for the expression of the cholera toxin genes (ctxAB) and more than 15 other genes encoding secreted or membrane proteins. The latter group includes virulence genes involved in the biogenesis of the TCP pilus, the accessory colonization factor, and such ToxR-activated genes as tagA, mutations in which cause no detectable virulence defect in the suckling mouse model. To analyze the regulation of expression and the structure of tagA, we have cloned and sequenced about 2 kb of DNA upstream from a tagA::TnphoA fusion. While the portion of the tagA gene product examined presented no extensive similarity to any known protein, the amino acid sequence deduced from an open reading frame (designated aldA) located upstream from and in opposite orientation to tagA was highly similar to the sequences of eukaryotic aldehyde dehydrogenases. An assay of aldehyde dehydrogenase activity in extracts of a wild-type V. cholerae strainand an aldA mutant confirmed that aldA encodes an aldehyde dehydrogenase. Expression of the aldA gene was studied together with that of tagA in both V. cholerae and Escherichia coli. The expression of both tagA and aldA was environmentally regulated and dependent on a functional toxR gene in V. cholerae, but neither promoter was activated by ToxR in E. coli, suggesting that expression of tagA and aldA requires an additional transcriptional activator besides ToxR. The aldA gene is the first example of a gene encoding a cytoplasmic protein that is under the control of ToxR, and this suggests that metabolic enzymes may constitute novel members of virulence regulons in bacteria.