Chikungunya virus (CHIKV) becomes one of the most important mosquito-borne alphavirus in the medical field. CHIKV is highly sensitive to antiviral activity of Type-I interferons (IFN-alpha/beta). Here, we investigated the role of IFN-induced 2',5'-Oligoadenylate Synthetase (OAS) family in innate immunity to CHIKV. We established inducible human epithelial HeLa cell lines expressing either the large form of human OAS, OAS3, or the genetic variant OAS3-R844X which is predicted to lack about 20% of the OAS3 protein from the carboxy terminus. HeLa cells respond to ectopic OAS3 expression by efficiently inhibiting CHIKV growth. The characteristic of the antiviral effect was a blockade in early stages of virus replication. Thus, OAS3 pathway may represent a novel antialphaviral mechanism by which IFN-alpha/beta controls CHIKV growth. HeLa cells expressing the truncated form of OAS3 were less resistant to CHIKV infection, raising the question on the involvement of OAS3 genetic polymorphism in human susceptibility to alphavirus infection.