Monocytes and T-cells play an important role in the development of atherosclerotic coronary artery disease (CAD). Transcriptome analysis of circulating mononuclear cells from carefully matched atherosclerotic and control patients will potentially provide insights into the pathophysiology of atherosclerosis and supply biomarkers for diagnostic purposes. From patients undergoing coronary angiography because of anginal symptoms, we carefully matched 18 patients with severe triple-vessel CAD to 13 control patients without angiographic signs of CAD. All patients were on statin and aspirin treatment. Elevated soluble-ICAM levels demonstrated increased vascular inflammation in atherosclerotic patients. RNA from circulating CD4+ T-cells, CD14+ monocytes, lipopolysaccharide-stimulated monocytes, and macrophages was subjected to genome-wide expression analysis. In CD14+ monocytes, few inflammatory genes were overexpressed in control patients, while atherosclerotic patients showed overexpression of a group of Krüppel-associated box - containing transcription factors involved in negative regulation of gene expression. These differences disappeared upon LPS-stimulation or differentiation towards macrophages. No consistent changes in T cell transcriptomes were detected. Large inter-individual variability prevented the use of single differentially expressed genes as biomarkers, while monocyte gene expression signature predicted patient status with an accuracy of 84%. In this comprehensive analysis of circulating cell transcriptomes in atherosclerotic CAD, cautious patient matching revealed only small differences in transcriptional activity in different mononuclear cell types. Only an indication of a negative feedback to inflammatory gene expression was detected in atherosclerotic patients. Transcriptome differences of circulating cells possibly play less of a role than hitherto thought in the individual patient's susceptibility to atherosclerotic CAD, when appropriately matched for clinical symptoms and medication taken.