B-1 cells are known to contribute most of the "natural antibodies" that are secreted in the steady state, antibodies which are crucial for protection against many pathogens including influenza virus. Whether the CD5(+) B-1a subset plays a role during an active immune response is incompletely understood. In contrast to recent data suggesting a passive role for B-1a cells, data provided here show strong highly localized activation of B-1 cells in the draining lymph nodes of the respiratory tract after influenza infection. B-1 cells are identified as a major source for both steady state and infection-induced local virus-neutralizing IgM. The CD5(+) B-1a subset is the main B-1 cell subset generating this response. B-1a cell responses are generated by their increased local accumulation rather than by antigen-specific expansion. Our study reveals that during infection with influenza, CD5-expressing B-1a cells respond to and contribute to protection, presumably without the need for B cell receptor-mediated antigen-specific signals, which are known to induce the death of B-1a cells rather than activation. With that, our data reveal fundamental differences in the response regulation of B-1 and B-2 cells during an infection.