B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2-EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies.