Previous studies have suggested that mice are resistant to the carcinogenic effects of aflatoxin B1 (AFB1) and that this resistance is largely the result of expression of an isoenzyme of glutathione S-transferase (GST) with high activity toward AFB1-8,9-epoxide. Significant interstrain differences in cytosolic GST activities toward a variety of substrates have been reported in mice. If such differences exist for the conjugation of AFB1-8,9-epoxide, then there may be significant mouse strain differences in susceptibility to AFB1-induced hepatocarcinogenicity. The hepatic microsomal and cytosolic biotransformation of AFB1 was studied in 8 different strains of mice fed a purified diet. GST-mediated conjugation of AFB1-8,9-epoxide with glutathione and GST activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (ECA) and cumene hydroperoxide (CHP) were determined with cytosolic fractions from 8-10 pooled livers. Specific activities of cytochrome-P-450-mediated oxidation of AFB1 to aflatoxin Q1 (AFQ1), aflatoxin M1 (AFM1), and aflatoxin P1 (AFP1), as well as the reactive intermediate AFB1-8,9-epoxide, were determined with hepatic microsomal fractions from each mouse strain. No striking differences in specific activity between mouse strains were observed for any of the P-450- or GST-mediated enzymatic pathways measured, although some statistically significant differences were found. GST specific activities toward AFB1-8,9-epoxide, CDNB, DCNB, ECA and CHP ranged from 1.5-2.1, 2,830-5,370, 81-144, 38-69 and 32-73 nmol/mg protein/min, respectively. The rate of formation of AFB1-8,9-epoxide ranged from 208 to 465 pmol/mg protein/min. The specific activities of AFQ1,AFM1, and AFP1 formation by microsomes ranged from 36-70, 161-326, and 252-426 pmol/mg protein/min, respectively. Mice fed a standard rodent chow diet showed evidence of microsomal and cytosolic enzyme induction when compared to mice fed a purified diet. The lack of substantial differences in enzyme specific activities between mouse strains suggests that interstrain variations in the hepatocarcinogenic effects of AFB1 in mice should not be large.