Stent-based therapies in percutaneous vascular intervention are associated with significant long-term complications related to in-stent restenosis. A growing body of literature demonstrates the feasibility of biodegradable materials for endovascular stents, which may, in theory, circumvent many of the immunologic and inflammatory response issues seen with long-term metallic stent failure in coronary and peripheral applications. This review describes the history of endovascular stents and the challenges encountered with metallic, drug-eluting, and biodegradable stents. A review of the basic engineering principles of biodegradable stents is provided, along with a discussion of the cellular mechanisms of restenosis.