Commercially available high-resolution three-dimensional optical imaging modalities-including confocal microscopy, two-photon microscopy, and optical coherence tomography-have fundamentally impacted biomedicine. Unfortunately, such tools cannot penetrate biological tissue deeper than the optical transport mean free path (approximately 1 mm in the skin). Photoacoustic tomography, which combines strong optical contrast and high ultrasonic resolution in a single modality, has broken through this fundamental depth limitation and achieved superdepth high-resolution optical imaging. In parallel, radio frequency-or microwave-induced thermoacoustic tomography is being actively developed to combine radio frequency or microwave contrast with ultrasonic resolution. In this Vision 20/20 article, the prospects of photoacoustic tomography are envisaged in the following aspects: (1) photoacoustic microscopy of optical absorption emerging as a mainstream technology, (2) melanoma detection using photoacoustic microscopy, (3) photoacoustic endoscopy, (4) simultaneous functional and molecular photoacoustic tomography, (5) photoacoustic tomography of gene expression, (6) Doppler photoacoustic tomography for flow measurement, (7) photoacoustic tomography of metabolic rate of oxygen, (8) photoacoustic mapping of sentinel lymph nodes, (9) multiscale photoacoustic imaging in vivo with common signal origins, (10) simultaneous photoacoustic and thermoacoustic tomography of the breast, (11) photoacoustic and thermoacoustic tomography of the brain, and (12) low-background thermoacoustic molecular imaging.