Modulation of neurite outgrowth in neuroblastoma cells by protein kinase C and platelet-activating factor

J Biol Chem. 1991 Oct 5;266(28):18620-5.

Abstract

Previous reports have shown that thrombin and activators of protein kinase C (PKC) inhibit neurite outgrowth (NOG) in neuroblastoma cells cultured in serum-free medium. Therefore, we tested the hypothesis that PKC activation mediates the effect of thrombin on NOG in murine neuroblastoma NB-2a cells. After 2 h in serum-free medium, 70% of the cells displayed neurites; addition of 300 ng/ml thrombin reduced NOG to 24% within 1 h. This inhibition was reduced after NB-2a cells were pretreated for 24 h with 200 nM phorbol dibutyrate down-regulate PKC. Thrombin and phorbol 12-myristate 13-acetate inhibited NOG in an additive way and the protein kinase inhibitors H-7, H-8, and HA1004 reversed the effect of thrombin on NOG with a rank order of activity consistent with PKC inhibition. Furthermore, PKC was translocated from the cytosol to a membrane-bound form 5 to 10 min after addition of thrombin. These findings indicate that thrombin inhibits NOG through a PKC-dependent pathway. Thrombin stimulates the synthesis of the phospholipid platelet-activating factor (PAF) in some cells. However, NOG was markedly stimulated when PAF or its analogue carbamyl-PAF were added to NB-2a cells in medium with serum. Furthermore, the PAF receptor antagonist SRI 63072 inhibited NOG in NB-2a cells in serum-free medium. These cells accumulated PAF with kinetics similar to that of NOG inducPAF was synthesized by the de novo pathway, as shown by the incorporation of [3H]choline. These findings suggest that PAF is a mediator of NOG in NB-2a cells. Thrombin neither stimulates nor inhibits PAF synthesis in these cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Division
  • Humans
  • Mice
  • Neurites / physiology*
  • Neuroblastoma
  • Platelet Activating Factor / physiology*
  • Protein Kinase C / antagonists & inhibitors
  • Protein Kinase C / metabolism*
  • Tetradecanoylphorbol Acetate / pharmacology
  • Thrombin / physiology
  • Tumor Cells, Cultured

Substances

  • Platelet Activating Factor
  • Protein Kinase C
  • Thrombin
  • Tetradecanoylphorbol Acetate