This paper proposes an analytical method for simultaneous near-infrared (NIR) spectrometric determination of alpha-linolenic and linoleic acid in eight types of edible vegetable oils and their blending. For this purpose, a combination of spectral wavelength selection by wavelet transform (WT) and elimination of uninformative variables (UVE) was proposed to obtain simple partial least square (PLS) models based on a small subset of wavelengths. WT was firstly utilized to compress full NIR spectra which contain 1413 redundant variables, and 42 wavelet approximate coefficients were obtained. UVE was then carried out to further select the informative variables. Finally, 27 and 19 wavelet approximate coefficients were selected by UVE for alpha-linolenic and linoleic acid, respectively. The selected variables were used as inputs of PLS model. Due to original spectra were compressed, and irrelevant variables were eliminated, more parsimonious and efficient model based on WT-UVE was obtained compared with the conventional PLS model with full spectra data. The coefficient of determination (r(2)) and root mean square error prediction set (RMSEP) for prediction set were 0.9345 and 0.0123 for alpha-linolenic acid prediction by WT-UVE-PLS model. The r(2) and RMSEP were 0.9054, 0.0437 for linoleic acid prediction. The good performance showed a potential application using WT-UVE to select NIR effective variables. WT-UVE can both speed up the calculation and improve the predicted results. The results indicated that it was feasible to fast determine alpha-linolenic acid and linoleic acid content in edible oils using NIR spectroscopy.