Identification of mRNA splicing factors as the endothelial receptor for carbohydrate-dependent lung colonization of cancer cells

Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3095-100. doi: 10.1073/pnas.0810110106. Epub 2009 Feb 13.

Abstract

Cell surfaces of epithelial cancer are covered by complex carbohydrates, whose structures function in malignancy and metastasis. However, the mechanism underlying carbohydrate-dependent cancer metastasis has not been defined. Previously, we identified a carbohydrate-mimicry peptide designated I-peptide, which inhibits carbohydrate-dependent lung colonization of sialyl Lewis X-expressing B16-FTIII-M cells in E/P-selectin doubly-deficient mice. We hypothesized that lung endothelial cells express an unknown carbohydrate receptor, designated as I-peptide receptor (IPR), responsible for lung colonization of B16-FTIII-M cells. Here, we visualized IPR by in vivo biotinylation, which revealed that the major IPR is a group of 35-kDa proteins. IPR proteins isolated by I-peptide affinity chromatography were identified by proteomics as Ser/Arg-rich alternative pre-mRNA splicing factors or Sfrs1, Sfrs2, Sfrs5, and Sfrs7 gene products. Bacterially expressed Sfrs1 protein bound to B16-FTIII-M cells but not to parental B16 cells. Recombinant Sfrs1 protein bound to a series of fucosylated oligosaccharides in glycan array and plate-binding assays. When anti-Sfrs antibodies were injected intravenously into mice, antibodies labeled a subset of lung capillaries. Anti-Sfrs antibodies inhibited homing of I-peptide-displaying phage to the lung colonization of B16-FTIII-M cells in vivo in the mouse. These results strongly suggest that Sfrs proteins are responsible for fucosylated carbohydrate-dependent lung metastasis of epithelial cancers.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antibodies / immunology
  • Carbohydrate Metabolism*
  • Cell Line, Tumor
  • Cell Membrane / metabolism
  • Endothelial Cells / metabolism*
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology*
  • Mice
  • Mice, Inbred C57BL
  • Nuclear Proteins / metabolism*

Substances

  • Antibodies
  • Nuclear Proteins