The European Pharmacopoeia (Ph. Eur.) and the World Health Organization (WHO) require the performance of extensive quality control testing including a potency test before a vaccine batch is released for human use. Whole cell pertussis (wP) vaccine potency is assessed by a mouse protection test (MPT) based on the Kendrick test. This test compares the vaccine dose necessary to protect 50% of mice against the effect of a lethal intracerebral dose of Bordetella pertussis and the dose of a suitable reference vaccine needed to give the same protection level. Due to the large variability in the results of this test and the severe distress which is inflicted on the many animals involved, its replacement by an alternative method is highly desirable. At the initiative of the European Directorate for the Quality of Medicines and HealthCare (EDQM) of the Council of Europe, in collaboration with the WHO and the In-vitro toxicology Unit/European Centre for the Validation of Alternative Methods (ECVAM) of the European Commission (EC) Joint Research Centre-Institute for Health and Consumer Protection (JRC-IHCP), wP vaccine specialists from all over the world were invited to present an overview of candidate alternatives at a symposium organised in Geneva (Switzerland) in March 2005. Although no alternative method was found suitable for immediate implementation of batch potency control, the Pertussis Serological Potency Test (PSPT), initially developed in mice and recently transferred to guinea pigs (gps), was identified as a model of interest. Using the PSPT in gps to test several components of combined vaccines such as Diphtheria-Tetanus-wP vaccines in the same animal series would allow further implementation of the European 3Rs policy to batch potency control, by additional method refinement and reduction of animal use. The present study evaluated 2 features of the serological response to wP vaccination: 1) the overall antibody response as measured by a "whole cell" ELISA (PSPT-wC-ELISA) which uses the B. pertussis 18323 challenge strain prescribed for the MPT to coat the assay plates and 2) the functional neutralising antibodies to pertussis toxin (PT, one of the main virulence factors of B. pertussis), as measured by the Chinese Hamster Ovary (CHO) cell assay. The results showed that 1) the gp model can be used for wP vaccine potency testing; 2) despite good repeatability and precision, the CHO cell assay did not generate results comparable to the MPT. Moreover, the CHO cell assay showed significant differences in the ability of wP vaccines to induce neutralising anti-PT antibodies, which did not correlate to the overall antibody response evaluated by PSPT-wC-ELISA; 3) comparable potencies were obtained in the MPT and the PSPT-wC-ELISA. This study, supported by the previous ones correlating the PSPT-wC-ELISA in mice with the MPT, confirms that PSPT-wC-ELISA in gps is a promising approach for batch release potency testing of wP vaccines for which consistency in production has already been demonstrated by the MPT. However, a large scale validation study is required prior to the adoption of PSPT-wC-ELISA as a compendial reference method for wP vaccines batch release control.