Background information: miRNAs (microRNAs) are a class of non-coding RNAs that inhibit gene expression by binding to recognition elements, mainly in the 3' UTR (untranslated region) of mRNA. A single miRNA can target several hundred mRNAs, leading to a complex metabolic network. miR-16 (miRNA-16), located on chromosome 13q14, is involved in cell proliferation and apoptosis regulation; it may interfere with either oncogenic or tumour suppressor pathways, and is implicated in leukaemogenesis. These data prompted us to search for and validate novel targets of miR-16.
Results: In the present study, by using a combined bioinformatics and molecular approach, we identified two novel putative targets of miR-16, caprin-1 (cytoplasmic activation/proliferation-associated protein-1) and HMGA1 (high-mobility group A1), and we also studied cyclin E which had been previously recognized as an miR-16 target by bioinformatics database. Using luciferase activity assays, we demonstrated that miR-16 interacts with the 3' UTR of the three target mRNAs. We showed that miR-16, in MCF-7 and HeLa cell lines, down-regulates the expression of caprin-1, HMGA1a, HMGA1b and cyclin E at the protein level, and of cyclin E, HMGA1a and HMGA1b at the mRNA levels.
Conclusions: Taken together, our data demonstrated that miR-16 can negatively regulate two new targets, HMGA1 and caprin-1, which are involved in cell proliferation. In addition, we also showed that the inhibition of cyclin E expression was due, at least in part, to a decrease in its mRNA stability.