Nuclear charge radii of ;{7,9,10,11}Be have been determined by high-precision laser spectroscopy. On-line measurements were performed with collinear laser spectroscopy in the 2s_{1/2}-->2p_{1/2} transition on a beam of Be+ ions. Collinear and anticollinear laser beams were used simultaneously, and the absolute frequency determination using a frequency comb yielded an accuracy in the isotope-shift measurements of about 1 MHz. Combining this with accurate calculations of the mass-dependent isotope shifts yields nuclear charge radii. The charge radius decreases from 7Be to 10Be and then increases for the halo nucleus 11Be. When comparing our results with predictions of ab initio nuclear-structure calculations we find good agreement. Additionally, the nuclear magnetic moment of 7Be was determined to be -1.3995(5)micro_{N} and that of 11Be was confirmed with an accuracy similar to previous beta-NMR measurements.