Background: We recently demonstrated that the T-helper type 1 (Th1) immune response plays an important role in the development of non-eosinophilic inflammation induced by airway exposure of an allergen plus double-stranded RNA (dsRNA). However, the role of lipoxygenase (LO) metabolites in the development of Th1 inflammation is poorly understood.
Objective: To evaluate the role of LO metabolites in the development of Th1 inflammation induced by sensitization with an allergen plus dsRNA.
Methods: A Th2-allergic inflammation mouse model was created by an intraperitoneal injection of lipopolysaccharide-depleted ovalbumin (OVA, 75 microg) and alum (2 mg) twice, and the Th1 model was created by intranasal application of OVA (75 microg) and synthetic dsRNA [10 microg of poly(I : C)] four times, followed by an intranasal challenge with 50 microg of OVA four times. The role of LO metabolites was evaluated using two approaches: a transgenic approach using 5-LO(-/-) and 15-LO(-/-) mice, and a pharmacological approach using inhibitors of cysteinyl leucotriene receptor-1 (cysLTR1), LTB4 receptor (BLT1), and 15-LO.
Results: We found that the Th1-allergic inflammation induced by OVA+dsRNA sensitization was similar between 5-LO(-/-) and wild-type (WT) control mice, although Th2 inflammation induced by sensitization with OVA+alum was reduced in the former group. In addition, dsRNA-induced Th1 allergic inflammation, which is associated with down-regulation of 15-hydroxyeicosateraenoic acids production, was not affected by treatment with cysLTR1 or BLT1 inhibitors, whereas it was significantly lower in 12/15-LO(-/-) mice compared with WT control mice. Moreover, dsRNA-induced allergic inflammation and the recruitment of T cells following an allergen challenge were significantly inhibited by treatment with a specific 15-LO inhibitor (PD146176).
Conclusion: 15-LO metabolites appear to be important mediators in the development of Th1-allergic inflammation induced by sensitization with an allergen plus dsRNA. Our findings suggest that the 15-LO pathway is a novel therapeutic target for the treatment of virus-associated asthma characterized by Th1 inflammation.