Mesangial cells are centrally located pericytes in the renal glomerulus. They are surrounded by an extracellular matrix and directly contact the glomerular basement membrane in vivo. Because these interactions are critical for renal development and function, we have studied human mesangial cell interactions with laminin, a major adhesive component of basement membranes present in the extracellular matrix of the mesangium. Human fetal and adult mesangial cell attachment was stimulated by both laminin and the laminin-derived synthetic peptides YIGSR-NH2, CQAGTFALRGDNPQG-NH2, and CIKVAVS-NH2. Furthermore, mesangial cells spread on laminin as well as on both the RGD-containing and CIKVAVS peptides. When added in solution, all three peptides inhibited mesangial cell attachment to laminin, and the latter two peptides inhibited mesangial cell spreading on laminin. Laminin affinity column chromatography demonstrated several low-molecular-mass laminin-binding proteins ranging from between 35 and 42 kDa, which predominated in fetal mesangial cells, whereas a higher molecular mass laminin-binding protein of 65 kDa was predominant in adult mesangial cells. Western blot analysis with an anti-32-kDa laminin-binding protein antibody showed increased expression of both 31- and 42-kDa proteins in fetal mesangial cells when compared with the adult. The antisera to the 32-kDa laminin-binding protein also inhibited fetal mesangial spreading on the CIKVAVS peptide. Western blot analysis with an anti-67-kDa laminin-binding protein antibody revealed a 110-kDa protein in adult mesangial cells that was not present in fetal mesangial cells.(ABSTRACT TRUNCATED AT 250 WORDS)