Some receptors and signaling molecules, such as Rho-kinase (ROCK), localize in caveolae. We asked whether the function of histamine receptors (H(1)) and 5-hydroxytryptamine (serotonin) receptors (5-HT(2A)) in bovine tracheal smooth muscle are modified after caveolae disruption and if so, whether the altered ROCK activity plays a role in this modification. Methyl-beta-cyclodextrin (MbetaCD), used to deplete membrane cholesterol, was shown to disrupt caveolae and diminish sustained contractions to histamine (approximately 80%), 5-HT (100%), alpha-methyl-5-HT (100%), and KCl (approximately 30%). Cholesterol-loaded MbetaCD (CL-MbetaCD) restored the responses to KCl and partially restored the responses to agonists. ROCK inhibition by Y-27632 diminished contractions to histamine (approximately 85%) and 5-HT (approximately 59%). 5-HT or histamine stimulation augmented ROCK activity. These increases were reduced by MbetaCD and partially reestablished by CL-MbetaCD. The increase in intracellular Ca(2+) that was induced by both agonists was reduced by MbetaCD. The presence of caveolin-1 (Cav-1), H1, 5-HT(2A), and ROCK1 was corroborated by immunoblotting of membrane fractions from sucrose gradients and by confocal microscopy. H(1) receptors coimmunoprecipitated with Cav-1 in caveolar and noncaveolar membrane fractions, whereas 5-HT(2A) receptors appeared to be restricted to noncaveolar membrane fractions. We conclude that caveolar and cholesterol integrity are indispensable for the proper functionality of the H(1) and 5-HT(2A) receptors through their Rho/ROCK signaling.