Various entities and genetic etiologies, including inherited long QT syndrome type 3 (LQT3), contribute to sudden infant death syndrome (SIDS). The goal of our research was to biophysically characterize a new SCN5A mutation (S1333Y) in a SIDS infant. S1333Y channels showed the gain of Na(+) channel function characteristic of LQT3, including a persistent inward Na(+) current and an enhanced window current that was generated by a -8 mV shift in activation and a +7 mV shift in inactivation. The correlation between the biophysical data and arrhythmia susceptibility suggested that the SIDS was secondary to the LQT3-associated S1333Y mutation.