Two-dimensional NMR experiments [correlated spectroscopy (COSY) and two-dimensional transferred nuclear Overhauser enhancement spectroscopy (TR-NOESY)] have been applied to study the interactions of a monoclonal antibody (mAb) directed to the main immunogenic region (MIR) of the acetylcholine receptor (AChR), and four synthetic decapeptides from the MIR. The decapeptides were the Torpedo AChR alpha 67-76 fragment (W67-N68-P69-A70-D71-Y72-G73-+ ++G74-I75-K76) and its three [A69], [A73], and [A76] analogues. The results led to the following conclusions: (1) the magnitude of the TR-NOE cross peaks does not depend only on the structuration of the peptide in the bound state, but also on restrictions of the mobility, i.e., on the correlation time tau c, which can be different for every residue; (2) the binding capacity of the synthetic peptides to mAbs measured by radioimmunoassay is directly correlated to the NOE magnitude; and (3) the combined interpretation of the COSY and TR-NOESY experiments gives a qualitative information about the nature and the overall conformation of the sequence which is in contact with the mAb binding site.