To determine the form of psychometric functions for 2I,2AFC level discrimination (commonly called intensity discrimination), ten increment levels were presented in random order within blocks of 100 trials. Stimuli were chosen to encompass a wide range of conditions and difference limens: eight 10-ms tones had frequencies of 0.25, 1, 8, or 14 kHz and levels of 30, 60, or 90 dB SPL; two 500-ms stimuli also were tested: a 1-kHz tone at 90 dB SPL and broadband noise at 63 dB SPL. For each condition, at least 20 blocks were presented in mixed order. Results for five normal listeners show that the sensitivity, d', is nearly proportional to delta L (= 20 log [(p + delta p)/p], where p is sound pressure) over the entire range of difference limens. When d' is plotted against Weber fractions for sound pressure, delta p/p, or intensity, delta I/I, exponents of the best-fitting power functions decrease with increasing difference limens and are less than unity for large difference limens. The approximately proportional relation between d' and delta L agrees with modern multichannel models of level discrimination and with psychometric functions derived for single auditory-nerve fibers. The results also support the notion that the difference limen, expressed as delta LDL and plotted on a logarithmic scale, is an appropriate representation of performance in level-discrimination experiments.