Introduction and objectives: Dipyridamole stress perfusion cardiovascular magnetic resonance (CMR) is used to detect coronary artery disease (CAD). However, few data are available on the diagnostic value of the systolic dysfunction induced by dipyridamole. This study investigated whether the induction of systolic dysfunction supplements the diagnostic information provided by perfusion imaging in the detection of CAD.
Methods: Overall, 166 patients underwent dipyridamole CMR and quantitative coronary angiography, with CAD being defined as a stenosis > or =70%. Systolic dysfunction at rest, systolic dysfunction with dipyridamole, induced systolic dysfunction, and stress first-pass perfussion deficit (PD) and delayed enhancement were quantified.
Results: In the multivariate analysis, PD (hazard ratio [HR]=1.6; 95% confidence interval [CI], 1.33-1.91;P< .0001) and induced systolic dysfunction (OR=1.8; 95% CI, 1.18-2.28; P< .007) were independently associated with CAD and had a sensitivity and specificity of 92% and 62% and 43% and 96%, respectively. Patients were categorized as having no ischemia (Group 1), PD but no induced systolic dysfunction (Group 2), or induced systolic dysfunction irrespective of PD (Group 3). In Group 3, the prevalence of CAD was higher than in Group 1 or 2 (96% vs. 22% and 79%, respectively; P=.001) and the risk of CAD was two-fold higher than in Group 2 (OR=2.34; 95% CI, 1.07-5.13; P=.034). Compared with Group 2, more hypoperfused segments were observed in Group 3 (6.2+/-2.6 vs. 7.4+/-3.4; P=.044), and more diseased vessels (1.4+/-1.0 vs. 1.8+/-0.9; P=.036). Adding induced systolic dysfunction to perfusion and clinical data improved the multivariate model's C-statistic for predicting CAD (0.81 vs. 0.87; P=.02).
Conclusions: Combining induced systolic dysfunction with perfusion imaging increases the diagnostic accuracy of detecting CAD and enables patients with severe ischemia and a high probability of CAD to be identified.