Monocyte-derived dendritic cells (MDDCs) have been used in therapeutic vaccination for cancer. A small number of studies have employed a similar approach to vaccinate human immunodeficiency virus (HIV)-infected individuals. We have thus analyzed the functional properties of MDDCs generated from HIV-infected individuals who either are receiving highly active antiretroviral therapy or are therapy naive. There was no difference in the MDDC phenotype or efficiency of MDDC generation between HIV-infected individuals and healthy control subjects. Despite this, the MDDCs derived from both groups of infected individuals were severely impaired in their ability to stimulate the proliferation of allogeneic T cells. Furthermore, production of interferon-gamma was reduced in T cells stimulated by MDDCs. These functional changes may be at least partly explained by reduced interleukin-12 and increased interleukin-10 secretion on stimulation with lipopolysaccharide and CD40 ligand. Our findings suggest that MDDCs used in therapeutic vaccination of HIV-infected individuals may show reduced potency.