Background: Clinicians often use validated risk models to guide treatment decisions for cardiovascular risk reduction. The most common risk models for predicting cardiovascular risk are the UKPDS, Framingham, and Archimedes models. In this article, the authors propose a model to optimize the selection of patients for statin therapy of hypercholesterolemia, for patients with type 2 diabetes, using each of the risk models. For each model,they evaluate the role of age, gender, and metabolic state on the optimal start time for statins.
Method: Using clinical data from the Mayo Clinic electronic medical record, the authors construct a Markov decision process model with health states composed of cardiovascular events and metabolic factors such as total cholesterol and high-density lipoproteins. They use it to evaluate the optimal start time of statin treatment for different combinations of cardiovascular risk models and patient attributes.
Results: The authors find that treatment decisions depend on the cardiovascular risk model used and the age, gender, and metabolic state of the patient. Using the UKPDS risk model to estimate the probability of coronary heart disease and stroke events, they find that all white male patients should eventually start statin therapy; however, using Framingham and Archimedes models in place of UKPDS, they find that for male patients at lower risk, it is never optimal to initiate statins. For white female patients, the authors also find some patients for whom it is never optimal to initiate statins. Assuming that age 40 is the earliest possible start time, the authors find that the earliest optimal start times for UKPDS, Framingham, and Archimedes are 50, 46, and 40, respectively, for women. For men, the earliest optimal start times are 40, 40, and 40, respectively.
Conclusions: In addition to age, gender, and metabolic state, the choice of cardiovascular risk model influences the apparent optimal time for starting statins in patients with diabetes.