A superhydrophobic surface with a static water contact angle (theta(w)) > 150 degrees was created by a simple "dip-coating" method of 60-nm SiO2 nanoparticles onto an amine-terminated (NH2) self-assembled monolayer (SAM) glass/silicon oxide substrate, followed by chemical vapor deposition of a fluorinated adsorbate. For comparison, a close-packed nanoparticle film, formed by convective assembly, gave theta(w) approximately 120 degrees. The stability of the superhydrophobic coating was enhanced by sintering of the nanoparticles in an O2 environment at high temperature (1100 degress C). A sliding angle of < 5 degrees indicated the self-cleaning properties of the surface. The dip-coating method can be applied to glass substrates to prepare surfaces that are superhydrophobic and transparent.