Binding of immune complexes to cellular FcgammaRs can promote cell activation and inflammation. In previous studies, a recombinant human (rh) soluble FcgammaR, rh-FcgammaRIA (CD64A), was shown to block inflammation in passive transfer models of immune complex-mediated disease. To assess whether rh-FcgammaRIA could block inflammation in a T cell- and B cell-dependent model of immune complex-mediated disease, the efficacy of rh-FcgammaRIA in collagen-induced arthritis was evaluated. Mice with established arthritis were treated with a single s.c. injection of rh-FcgammaRIA (0.2-2.0 mg/dose) given every other day for 11 days. Relative to mice injected with vehicle alone, mice treated with rh-FcgammaRIA exhibited lower serum concentrations of IL-6, anti-type II collagen Abs, and total IgG2a. These changes were correlated with lower levels of paw swelling and joint damage in the rh-FcgammaRIA-treated mice and occurred in the presence of a significant murine Ab response to rh-FcgammaRIA. Comparison of the serum rh-FcgammaRIA concentration vs time profiles for rh-FcgammaRIA administered at two dose levels by i.v. and s.c. injection revealed that the bioavailabilty of s.c. administered rh-FcgammaRIA was 27-37%. Taken together, these data show that rh-FcgammaRIA is an effective inhibitor of inflammation in a model of established arthritis in mice.