Valproic acid (VPA), a drug used to treat epilepsy and bipolar mood disorder, inhibits histone deacetylase (HDAC), which is associated with the epigenetic regulation of gene expression. Using a microarray, we comprehensively examined which genes are affected by stimulating cultured rat cortical neurons with VPA, and found that the VPA-treatment markedly altered gene expression (up-regulated; 726 genes, down-regulated; 577 genes). The mRNA expression for brain-derived neurotrophic factor (BDNF) and the alpha4 subunit of the GABA(A) receptor (GABA(A)Ralpha4), known to be involved in epileptogenesis, was up-regulated, with the increase in BDNF exon I-IX mRNA expression being remarkable, whereas that for GABA(A)Rgamma2, GAD65 and 67, and the K(+)/Cl(-) co-transporter KCC2, which are responsible for the development of GABAergic inhibitory neurons, was down-regulated. The number of GAD67-positive neurons decreased upon VPA-treatment. Similar changes of up- and down-regulation were obtained by trichostatin A. VPA did not affect the intracellular Ca(2+) concentration and the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), suggesting its direct action on HDAC. The acetylation of histones H3 and H4 was increased in the promoters of up-regulated but not down-regulated genes. Thus, VPA may disrupt a balance between excitatory and inhibitory neuronal activities through its epigenetic effect.