Effective techniques for the stable genetic modification of peripheral T cells would facilitate functional gene studies and the development of gene therapeutic approaches. However, many approaches to genetically modify T cells are hampered by low transfection efficiency, direct cell toxicity, and the need for specialized laboratory space. In this study we investigated the Amaxa Nucleofector platform, a nonviral technique to transfect primary human T cells. A plasmid equipped with two different promoters enabled concomitant expression of a gene of interest and of a cell surface marker allowing for immunomagnetic cell enrichment. This resulted in highly purified populations of gene-modified T cells and, after repeated enrichment steps, provided stably and homogeneously transfected, fully functional human T cells. In summary, this study provides proof of principle that human T cells can be altered to homogeneously and stably express a gene of interest by a nonviral technique. This should enable further studies on T cell physiology and ultimately facilitate the translation of treatment approaches either for diseases that are caused by defective gene function in T cells or for diseases that require genetically designed T cell therapy.