Wireless neural recording with single low-power integrated circuit

IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):322-9. doi: 10.1109/TNSRE.2009.2023298. Epub 2009 Jun 2.

Abstract

We present benchtop and in vivo experimental results from an integrated circuit designed for wireless implantable neural recording applications. The chip, which was fabricated in a commercially available 0.6- mum 2P3M BiCMOS process, contains 100 amplifiers, a 10-bit analog-to-digital converter (ADC), 100 threshold-based spike detectors, and a 902-928 MHz frequency-shift-keying (FSK) transmitter. Neural signals from a selected amplifier are sampled by the ADC at 15.7 kSps and telemetered over the FSK wireless data link. Power, clock, and command signals are sent to the chip wirelessly over a 2.765-MHz inductive (coil-to-coil) link. The chip is capable of operating with only two off-chip components: a power/command receiving coil and a 100-nF capacitor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / physiology*
  • Amplifiers, Electronic*
  • Equipment Design
  • Equipment Failure Analysis
  • Nerve Net / physiology*
  • Pattern Recognition, Automated / methods*
  • Reproducibility of Results
  • Semiconductors
  • Sensitivity and Specificity
  • Signal Processing, Computer-Assisted / instrumentation*
  • Telemetry / instrumentation*