Egg white proteins have many biological functions and substantial nutritional benefits when used as a food source; however, they also contain allergens such as ovalbumin, ovomucoid, and ovotransferrin. We prepared oligopeptides without allergens from hen egg whites via the use of several proteases, and assessed their effects on platelet aggregation and blood coagulation, known to both of which are known to be major risk factors in thrombogenesis. Egg white oligopeptides (EWOP) inhibited collagen-induced human platelet aggregation in a dose-dependent manner. Additionally, we attempted to determine whether cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), aggregation-inhibiting intracellular molecules, regulate EWOP-inhibited platelet aggregation. EWOP caused an increase in cAMP levels, but did not affect cGMP levels, which suggests that the anti-platelet activity of EWOP operates in a cAMP-dependent manner, rather than via a cGMP-dependent process, in collagen-induced platelet aggregation. In addition, EWOP induced a significantly prolonged prothrombin time (PT) as compared with the controls. These data show that EWOP inhibits the conversion of fibrinogen to fibrin in a plasmatic atmosphere on an extrinsic pathway. Accordingly, these findings suggest that EWOP may be an excellent candidate as a crucial inhibitor of platelet activation, and its anti-platelet effects appear to involve the inhibition of both platelet aggregation and blood coagulation within the cardiovascular system.