Alpha-bisabolol is a natural monocyclic sesquiterpene alcohol. It has been used in cosmetics for hundreds of years because of its perceived skin-healing properties. Alpha-bisabolol is known to have anti-irritant, anti-inflammatory and antimicrobial properties. In precedent studies, we described how alpha-bisabolol exerts a selective pro-apoptotic action towards transformed cells [Cavalieri E et al. (2004) Biochem Biophys Res Commun 315, 589-594] and its uptake is mediated by lipid rafts on the plasma membrane [Darra E et al. (2008) Arch Biochem Biophys 476, 113-123]. In this study, we hypothesize that the intracellular target of alpha-bisabolol may be the mitochondrial permeability transition pore (mPTP). To evaluate this hypothesis, we used one transformed cell line (human glioma T67) in comparison with a nontransformed one (human fibroblasts). We assessed the effect of a specific mPTP inhibitor (cyclosporine A) on the toxic action of alpha-bisabolol. Results show that the alpha-bisabolol-induced decrease in oxygen consumption is abolished by the addition of cyclosporine A in T67 cells, indicating that alpha-bisabolol may target mPTP. The central role of mitochondria was also demonstrated by using galactose to force cells to a more aerobic metabolism. In this condition, we observed higher alpha-bisabolol toxicity. Furthermore, we studied the effect of alpha-bisabolol on isolated rat liver mitochondria. This study expands the notion of the specific action of alpha-bisabolol on transformed cells and suggests that it may act by disturbing the structure and function of the mPTP. Alpha-bisabolol toxicity is clearly related to its cellular uptake, which is higher in transformed cell lines.