The biotransformation of nodakenetin (NANI) by rat liver microsomes in vitro was investigated. Two major polar metabolites were produced by liver microsomes from phenobarbital-pretreated rats and detected by reversed-phase high-performance liquid chromatography (RP-HPLC) analysis. The chemical structures of two metabolites were firmly identified as 3'(R)-hydroxy-nodakenetin-3'-ol and 3'(S)-hydroxy-nodakenetin-3'-ol, respectively, on the basis of their (1)H-NMR, MS and optical rotation analysis. The latter was a new compound. A sensitive, selective and simple RP-HPLC method has been developed for the simultaneous determination of NANI and its two major metabolites in rat liver microsomes. Chromatographic conditions comprise a C(18) column, a mobile phase with MeOH-H(2)O (40 : 60, v/v), a total run time of 40 min, and ultraviolet absorbance detection at 330 nm. In the rat heat-inactivated liver microsomal supernatant, the lower limits of detection and quantification of metabolite I, metabolite II and NANI were 5.0, 2.0, 10.0 ng/mL and 20.0, 5.0, 50.0 ng/mL, respectively, and their calibration curves were linear over the concentration range 50-400, 20-120 and 150-24000 ng/mL, respectively. The results provided a firm basis for further evaluating the pharmacokinetics and clinical efficacy of NANI.
(c) 2009 John Wiley & Sons, Ltd.