Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors

BMC Evol Biol. 2009 Jul 9:9:160. doi: 10.1186/1471-2148-9-160.

Abstract

Background: Several observations support the hypothesis that vector-driven selection plays an important role in shaping dengue virus (DENV) genetic diversity. Clustering of DENV genetic diversity at a particular location may reflect underlying genetic structure of vector populations, which combined with specific vector genotype x virus genotype (G x G) interactions may promote adaptation of viral lineages to local mosquito vector genotypes. Although spatial structure of vector polymorphism at neutral genetic loci is well-documented, existence of G x G interactions between mosquito and virus genotypes has not been formally demonstrated in natural populations. Here we measure G x G interactions in a system representative of a natural situation in Thailand by challenging three isofemale families from field-derived Aedes aegypti with three contemporaneous low-passage isolates of DENV-1.

Results: Among indices of vector competence examined, the proportion of mosquitoes with a midgut infection, viral RNA concentration in the body, and quantity of virus disseminated to the head/legs (but not the proportion of infected mosquitoes with a disseminated infection) strongly depended on the specific combinations of isofemale families and viral isolates, demonstrating significant G x G interactions.

Conclusion: Evidence for genetic specificity of interactions in our simple experimental design indicates that vector competence of Ae. aegypti for DENV is likely governed to a large extent by G x G interactions in genetically diverse, natural populations. This result challenges the general relevance of conclusions from laboratory systems that consist of a single combination of mosquito and DENV genotypes. Combined with earlier evidence for fine-scale genetic structure of natural Ae. aegypti populations, our finding indicates that the necessary conditions for local DENV adaptation to mosquito vectors are met.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Biological / genetics*
  • Aedes / genetics*
  • Aedes / virology*
  • Animals
  • Dengue Virus / genetics*
  • Female
  • Genotype
  • Host-Pathogen Interactions
  • Insect Vectors / genetics
  • Insect Vectors / virology
  • Polymorphism, Genetic
  • RNA, Viral / analysis
  • Species Specificity
  • Thailand

Substances

  • RNA, Viral