Control of respiration in flight muscle from the high-altitude bar-headed goose and low-altitude birds

Am J Physiol Regul Integr Comp Physiol. 2009 Oct;297(4):R1066-74. doi: 10.1152/ajpregu.00241.2009. Epub 2009 Aug 5.

Abstract

Bar-headed geese fly at altitudes of up to 9,000 m on their biannual migration over the Himalayas. To determine whether the flight muscle of this species has evolved to facilitate exercise at high altitude, we compared the respiratory properties of permeabilized muscle fibers from bar-headed geese and several low-altitude waterfowl species. Respiratory capacities were assessed for maximal ADP stimulation (with single or multiple inputs to the electron transport system) and cytochrome oxidase excess capacity (with an exogenous electron donor) and were generally 20-40% higher in bar-headed geese when creatine was present. When respiration rates were extrapolated to the entire pectoral muscle mass, bar-headed geese had a higher mass-specific aerobic capacity. This may represent a surplus capacity that counteracts the depressive effects of hypoxia on mitochondrial respiration. However, there were no differences in activity for mitochondrial or glycolytic enzymes measured in homogenized muscle. The [ADP] leading to half-maximal stimulation (K(m)) was approximately twofold higher in bar-headed geese (10 vs. 4-6 microM), and, while creatine reduced K(m) by 30% in this species, it had no effect on K(m) in low-altitude birds. Mitochondrial creatine kinase may therefore contribute to the regulation of oxidative phosphorylation in flight muscle of bar-headed geese, which could promote efficient coupling of ATP supply and demand. However, this was not based on differences in creatine kinase activity in isolated mitochondria or homogenized muscle. The unique differences in bar-headed geese existed without prior exercise or hypoxia exposure and were not a result of phylogenetic history, and may, therefore, be important evolutionary specializations for high-altitude flight.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Adenosine Diphosphate / metabolism
  • Adenosine Triphosphate / metabolism
  • Altitude*
  • Animal Migration*
  • Animals
  • Biological Evolution
  • Cell Respiration
  • Creatine / metabolism
  • Creatine Kinase, Mitochondrial Form / metabolism
  • Ducks / physiology*
  • Electron Transport Complex IV / metabolism
  • Energy Metabolism*
  • Flight, Animal*
  • Geese / physiology*
  • Glycolysis
  • Kinetics
  • Mitochondria, Muscle / metabolism
  • Muscle Contraction*
  • Oxidative Phosphorylation
  • Pectoralis Muscles / enzymology
  • Pectoralis Muscles / metabolism*
  • Succinic Acid / metabolism

Substances

  • Adenosine Diphosphate
  • Adenosine Triphosphate
  • Succinic Acid
  • Electron Transport Complex IV
  • Creatine Kinase, Mitochondrial Form
  • Creatine