Deregulated cell proliferation and apoptosis play a major role in hepatocellular carcinoma (HCC). MicroRNAs participate in the modulation of key molecules linked to hepatocarcinogenesis.
Purpose: This study aims to investigate the role of miR-221 in the modulation of Bmf, a proapoptotic BH3-only protein, and to characterize miR-221 contribution to hepatocarcinogenesis through modulation of apoptosis.
Experimental design: Transfection of miR-221 and anti-miR-221 in HCC-derived cell lines and luciferase reporter assay were used to assess Bmf as a target of miR-221. Modulation of miR-221 and Bmf expression contributed to characterize their role in anoikis. Primary HCC tissues were analyzed to assess the clinical relevance of in vitro findings.
Results: Enforced miR-221 expression caused Bmf down-regulation, whereas anti-miR-221 induced its up-regulation. A luciferase reporter assay confirmed Bmf as a target of miR-221. Following matrix detachment, miR-221 silencing led to increased apoptotic cell death. The analysis of HCC tissues revealed an inverse correlation between miR-221 and Bmf expression and a direct correlation between Bmf and activated caspase-3, as a marker of apoptosis. High miR-221 levels were associated with tumor multifocality and reduced time to recurrence after surgery.
Conclusions: Our results indicate that miR-221, by targeting Bmf, inhibits apoptosis. Moreover, in HCC, miR-221 overexpression is associated with a more aggressive phenotype. These findings, together with the previously reported modulation of CDKN1B/p27 and CDKN1C/p57, show that miR-221 simultaneously affects multiple pro-oncogenic pathways and suggest miR-221 as a potential target for nonconventional treatment against HCC.