Twenty-five percent of all lung cancer cases are not attributable to smoking. Epidermal growth factor receptor (EGFR) mutations, which are involved in approximately 50% of nonsmoker lung cancer, are positively correlated with responsiveness to gefitinib, and inversely correlated with smoking history. Activating EGFR mutations play a critical role in the carcinogenesis of nonsmoking-related lung cancer. To investigate the chemopreventive effects of gefitinib on nonsmoking-related lung cancer, we generated transgenic mice expressing EGFR L858R in type II pneumocytes constitutively using the surfactant protein-C promoter. The transgenic mice invariably developed atypical adenomatous hyperplasia at age 4 weeks and multifocal adenocarcinoma of varying sizes at age 7 weeks. Notably, the expression levels of phosphorylated and total ErbB2, ErbB3, and thyroid transcription factor-1 were elevated in the transgenic mice compared with wild-type controls at age 3 weeks. Administration of gefitinib to 3-week-old transgenic mice for 1 week before carcinogenesis reduced the amount of phosphorylated EGFR in the lungs of the mice to the baseline level. Gefitinib (5 mg/kg/d; n = 5, 5, and 15) or vehicle (n = 5, 5, and 15) was administered to transgenic mice from age 3 to 8, 13, and 18 weeks, respectively. The numbers of lung tumors in the control and gefitinib-treated groups were 1.75, 5.8, 10.2, and 0 (P < 0.05), respectively. No fatal toxic events occurred in either group, and gefitinib inhibited tumorigenesis completely in this mouse model. These results suggest the utility of molecular targeted chemoprevention against nonsmoking-related lung cancer.