Background: In this prospective cohort study, we have undertaken a comprehensive evaluation of clinical parameters along with variation in 29 genes (including CYP2C9 and VKORC1) to identify factors determining interindividual variability in warfarin response.
Methods: Consecutive patients (n=311) were followed up prospectively for 26 weeks. Several outcomes chosen to capture both warfarin efficacy and toxicity were assessed. Univariate and multiple regression analyses were undertaken to assess the combined effect of clinical and genetic factors.
Results: CYP2C9 was the most important gene determining initial anticoagulant control, whereas VKORC1 was more important for stable anticoagulation. Novel associations with some clinical outcomes were found with single nucleotide polymorphisms in the cytochrome 450 genes CYP2C18 and CYP2C19, which were independent of the associations observed with CYP2C9 and in genes encoding CYP3A5, protein S and clotting factor V, although the variability explained by these genes was small. On the basis of the results of microcosting, adverse events were shown to be a significant predictor of total cost.
Conclusion: Accurate prediction of warfarin dose requirement needs to take into account multiple genetic and environmental factors, the contributions of which vary in the induction and maintenance phases of treatment.