Prolactin (PRL) is one of the most versatile hormones found in the pituitary of vertebrates and exerts its actions through binding to a specific PRL receptor (PRLR). Here we describe the cloning and characterization of a second prolactin receptor (ntPRLR2), isolated from the ovary of Nile tilapia (Oreochromis niloticus). The newly identified PRLR cDNA was 2011 bp in length and encoded 529 amino acids. It shared 31.6% identity in nucleotide sequence and 29.2% in deduced amino acid sequence with the first PRLR identified in Nile tilapia (ntPRLR1). Both of these ntPRLRs resemble the long form mammalian PRLRs. The nominated ntPRLR2 was further confirmed as a real prolactin receptor based on its competence to transactivate the beta-casein and c-fos promoters in the transiently ntPRLR2-transfected HEK293 cells. The ntPRLR2 gene also found to encode a 864-bp short form transcript in the ovary, which was confirmed by Northern blot analysis. A tissue distribution study by real-time PCR revealed that the mRNA of both receptors (ntPRLR1 and ntPRLR2) was widely expressed in different tissues, with an extremely high abundance in the osmoregulatory organs, including the gills, intestine and kidney. ntPRLR1 mRNA was more abundant than ntPRLR2 in the testis, while the reverse expression pattern was found in the ovary. In the ovary, ntPRLR2 mRNA demonstrated a distinct gonadal development-dependent expression profile, with significantly higher levels at a sexual mature stage than at sexual recrudescent and sexual regressed stages. When challenged with estradiol, ntPRLR2 mRNA expression was up-regulated by E2, whereas E2 had no significant effect on ntPRLR1.