Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin

Eur J Oral Sci. 2009 Oct;117(5):485-97. doi: 10.1111/j.1600-0722.2009.00666.x.

Abstract

Although the nonamelogenin proteins, ameloblastin and enamelin, are both low-abundance and rapidly degrading components of forming enamel, they seem to serve essential developmental functions, as suggested by findings that an enamel layer fails to appear on teeth of mice genetically engineered to produce either a truncated form of ameloblastin (exons 5 and 6 deleted) or no enamelin at all (null). The purpose of this study was to characterize, by direct micro weighing, changes in enamel mineralization occurring on maxillary and mandibular incisors of mice bred for these alterations in nonamelogenin function (Ambn(+/+, +/-5,6, -5,6/-5,6), Enam(+/+, +/- ,-/-)). The results indicated similar changes to enamel-mineralization patterns within the altered genotypes, including significant decreases by as much as 50% in the mineral content of maturing enamel from heterozygous mice and the formation of a thin, crusty, and disorganized mineralized layer, rather than true enamel, on the labial (occlusal) surfaces of incisors and molars along with ectopic calcifications within enamel organ cells in Ambn(-5,6/-5,6) and Enam(-/-) homozygous mice. These findings confirm that both ameloblastin and enamelin are required by ameloblasts to create an enamel layer by appositional growth as well as to assist in achieving its unique high level of mineralization.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ameloblasts / chemistry
  • Ameloblasts / physiology
  • Ameloblasts / ultrastructure
  • Amelogenesis / genetics
  • Amelogenesis / physiology*
  • Animals
  • Dental Enamel / chemistry
  • Dental Enamel / ultrastructure
  • Dental Enamel Proteins / analysis
  • Dental Enamel Proteins / genetics
  • Dental Enamel Proteins / physiology*
  • Dentin / chemistry
  • Dentin / growth & development
  • Dentin / ultrastructure
  • Enamel Organ / abnormalities
  • Enamel Organ / chemistry
  • Enamel Organ / ultrastructure
  • Exons / genetics
  • Female
  • Gene Deletion
  • Genotype
  • Heterozygote
  • Homozygote
  • Incisor / chemistry
  • Incisor / growth & development
  • Incisor / ultrastructure
  • Male
  • Mandible / chemistry
  • Maxilla / chemistry
  • Mice
  • Mice, Knockout
  • Microscopy, Electron, Scanning
  • Minerals / analysis
  • Molar / chemistry
  • Molar / growth & development
  • Molar / ultrastructure
  • Tooth Calcification / genetics
  • Tooth Calcification / physiology*

Substances

  • Ambn protein, mouse
  • Dental Enamel Proteins
  • Minerals
  • tuftelin