Recent studies demonstrate that social interactions can have a profound influence on Drosophila melanogaster behavior and cuticular pheromone patterns. Olfactory memory performance has mostly been investigated in groups, and previous studies have reported that grouped flies do not interact with each other and behave in the same way as individual flies during short-term memory retrieval. However, the influence of social effects on the two known forms of Drosophila long-lasting associative memory, anesthesia-resistant memory (ARM) and long-term memory (LTM), has never been reported. We show here that ARM is displayed by individual flies but is socially facilitated; flies trained for ARM interact within a group to improve their conditioned performance. In contrast, testing shows LTM improvement in individual flies rather than in a group. We show that the social facilitation of ARM during group testing is independent of the social context of training and does not involve nonspecific aggregation. Furthermore, we demonstrate that social interactions facilitate ARM retrieval. We also show that social interactions necessary for this facilitation are specifically generated by trained flies: when single flies trained for ARM are mixed with groups of naive flies, they display poor retrieval, whereas mixing with groups trained either for ARM or LTM enhances performance.