When turning without vision or audition, people tend to perceive their locomotion as a change in heading relative to objects in the remembered surroundings. Such perception of self-rotation depends on sensitivity to information for movement from biomechanical activity of the locomotor system or from inertial activation of the vestibular and postural systems. The authors report 3 experiments that investigated the relative contributions of biomechanical and inertial information to perceiving the speed of self-rotation. Using a circular treadmill, the proportions of the 2 sources of proprioceptive information were varied, creating walking conditions with a constant rate of biomechanical activity but with variable speeds of rotation relative to inertial space. The results reveal stable individual differences in sensitivity to information for the perception of locomotion. Just more than half of the participants based their perceived speed of self-rotation on biomechanical information, whereas the others based theirs on inertial information.
PsycINFO Database Record (c) 2009 APA, all rights reserved.