We demonstrate three-dimensional (3D) electronic Fourier transform spectroscopy of GaAs quantum wells using four fully phase-coherent, noncollinear optical fields. Since the full complex signal field is measured as a function of all three time intervals, nearly every peak in the resulting 3D spectral solid arises from a distinguishable sequence of transitions represented by a single Feynman pathway. We use the 3D spectral peaks to separate two pathways involving weakly bound mixed biexcitons generated in different time orders. In the process, we reveal a peak that was previously obscured by a correlated but unbound exciton pair coherence. We also demonstrate a calibration procedure for the carrier frequency which yields biexciton binding energy values with high accuracy.