An electrochemical protocol based on reduction is developed to determine methylprednisolone using single-wall carbon nanotubes (SWNTs) modified edge plane pyrolytic graphite electrode (EPPGE). To obtain a good sensitivity, instrumental variables were studied using Square Wave Voltammetry (SWV). The voltammetric results indicate that SWNTs modified EPPGE remarkably enhances the reduction of methylprednisolone which leads to considerable improvement of peak current with shift of peak potential to less negative values. The voltammetric current showed a linear response for methylprednisolone concentration in the range 5-500 nM with a sensitivity of 98 nA nM(-1). The limit of detection was estimated to be 4.5x10(-9)M. The developed method is used for the determination of methylprednisolone in pharmaceutical dosages and human blood plasma samples of patients undergoing treatment with methylprednisolone. The major metabolites present in blood plasma did not interfere with the present investigation as they did not exhibit reduction peak in the experimental range used. A comparison of results with high performance liquid chromatography (HPLC) indicates a good agreement.