The effect of brief myocardial ischemia on the expression of heat shock protein (HSP 70) was examined in an in vivo rabbit model of myocardial ischemia using Northern blotting. Functional studies were carried out in the open-chested anesthetized rabbit. The large marginal branch of the left circumflex was occluded four times for 5 min. Using piezoelectric crystals implanted midwall in the ischemic zone, end-diastolic length, end-systolic length, and percent segmental shortening were assessed. Expression of HSP 70 was measured by Northern blotting. A single 5-min coronary occlusion doubled the expression of HSP 70 whereas four cycles of 5 min of ischemia/5 min of reperfusion resulted in a threefold increase in HSP 70 mRNA (P less than 0.001). Measurements with the piezoelectric crystals showed mild myocardial dysfunction concomitant with the increase in HSP 70. This increase in HSP 70 mRNA after repetitive brief ischemia was transient, occurring as early as 1 h and returning to baseline by 24 h after ischemia. Western blot analysis with a monoclonal antibody to HSP 70 was used to compare sham and postischemic myocardial HSP 70 levels. Changes in the amount of HSP 70 were evident as early as 2 h and were even more striking at 24 h.