Mechanism of radiosensitization by halogenated pyrimidines: effect of BrdU on cell killing and interphase chromosome breakage in radiation-sensitive cells

Radiat Res. 1991 Jan;125(1):56-64.

Abstract

The effect of BrdU incorporation on cell radiosensitivity as well as on the induction of chromosome damage by radiation was studied in plateau-phase xrs-5 cells using the premature chromosome condensation (PCC) method. It is well known that xrs-5 cells are sensitive to ionizing radiation and defective in the repair of radiation-induced DNA double-strand breaks, chromosome damage, and potentially lethal damage (PLD). Compared to repair-proficient CHO 10B cells, a reduction was observed in the overall BrdU-mediated radiosensitization in plateau-phase xrs-5 cells for the same degree of thymidine replacement. This finding is interpreted with a model for BrdU-induced radiosensitization advanced previously, in which two distinct components act to produce the overall radiosensitization observed. One component involves processes associated with the increase in initial damage (DNA and chromosome) production per unit absorbed dose and causes an increase in the slope of the survival curve, while the second component involves enhanced fixation of radiation-induced damage (PLD) and causes a reduction in the width of the shoulder of the survival curve. It is suggested that in plateau-phase xrs-5 cells, the deficiency in the repair of radiation-induced damage compromises BrdU-mediated radiosensitization by leaving active only the radiosensitization component that is associated with an increase in damage induction. Enhancement of cell killing by BrdU in plateau-phase xrs-5 cells resulted in a decrease in D0, the relative value of which was similar to the relative increase in the production of chromosome damage as measured by the PCC method. The relative values for the change in D0 and the production of chromosome aberrations were similar in plateau-phase CHO 10B and xrs-5 cells, suggesting that the physicochemical and/or biochemical processes associated with this phenomenon are the same in the two cell lines. Radiosensitization of a magnitude similar to that observed in exponentially growing CHO 10B cells was induced by BrdU in exponentially growing xrs-5 cells. This effect is attributed to a partial expression of the repair gene (transiently during S phase in all cells, or throughout the cycle in a fraction of cells) that permits some repair of radiation-induced damage and which is compromised by BrdU.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bromodeoxyuridine / pharmacology*
  • Cell Survival / drug effects
  • Cell Survival / radiation effects
  • Chromosomes / drug effects
  • Chromosomes / radiation effects
  • DNA Repair / drug effects
  • DNA Repair / radiation effects
  • Dose-Response Relationship, Drug
  • Dose-Response Relationship, Radiation
  • Radiation-Sensitizing Agents / pharmacology*

Substances

  • Radiation-Sensitizing Agents
  • Bromodeoxyuridine